Work package 2: (Further) Development of a modern digital site mapping, focusing on site vegetation analysis and tree species suitability analysis

Janko Ljubičić FFUB

Albert Reif UF

Tuesday, 14th May 2024.

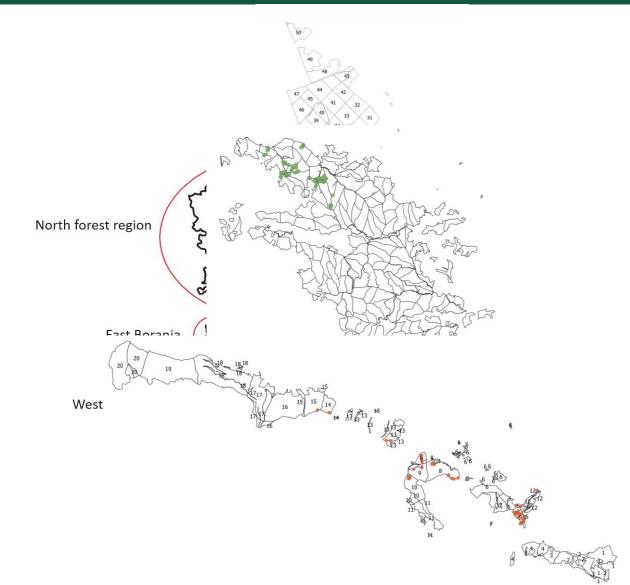
Olivera Košanin FFUB

Development and implementat of adaptation strategies to climate change in forest management

Razvoj i primena strategija prilagođavanja klimatskim promenama

u gazdovaniu šumama

ANKLIWA-DS



Work package 2: (Further) Development of a modern digital site mapping, focusing on site vegetation analysis and tree species suitability analysis

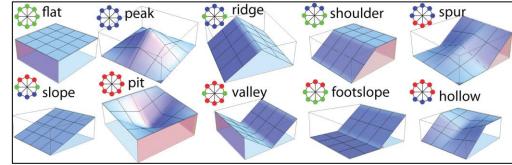
- Objectives of WP 2:
 - Improving the methodology for digital site mapping
 - Distribution of tree species and forest types in relation to temperature and requirements for water and nutrient regime (in the form of a bioclimatic complex)
 - Introduction of climate-sensitive models
 - Predicting future scenarios

Work package 2: (Further) Development of a modern digital site mapping, focusing on site vegetation analysis and tree species suitability analysis

- Study areas:
- MU "Visoka šuma-Lošinci"
- MU "Istočna Boranja"
- MU "Meliorativno zaštitne šume Rača"

Work tasks

- Phase I:
 - review of literature;
 - preparation of methodology;
 - field work (field reconnaissance, opening of soil profiles, soil sampling, vegetation relevés)
- Phase II:
 - sample processing (laboratory analysis of soil and analysis of vegetation relevés);
 - climate data preparation;
 - developing of methodology
- Phase III:
 - completing the methodology;
 - development of climate sensitive models


• The focus is on 2 species

- Parent material:
 - Srem-loessoid-marsh sediments (sand, siltstone sand, siltstone clay)
 - Istočna Boranja- limestone, phyllite and granodiorite
 - Tara- limestone

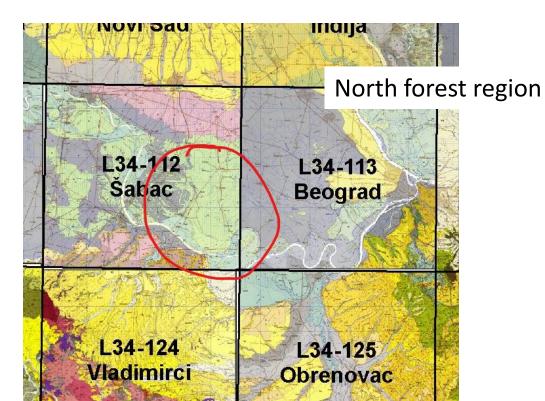
- For beech, the soil profiles were placed at:
 - different forms of terrain geomorphones (peak, ridge, shoulder, spur + slope, hollow, footslope and pit/valley)

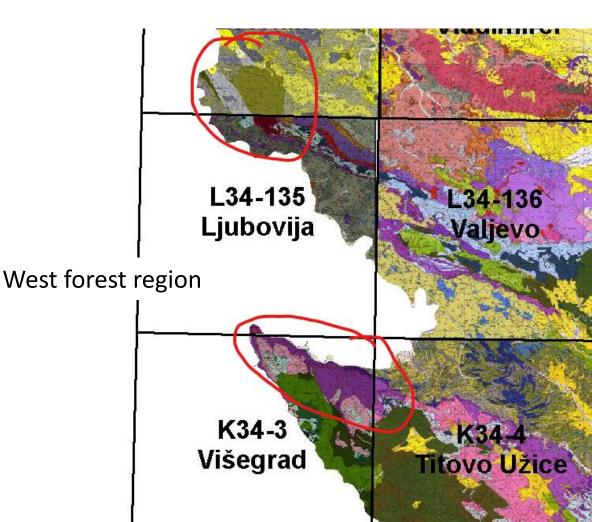
- different aspects:
 - warm (south, south-east, south-west and west);
 - neutral (all aspects up to 12.5°) and
 - cold (north, north-east, north-west and east)
- and on slopes < 30° and > 30° (spur + slope and footslope)

• A sufficient number of repetitions is required (3 pedological profiles per combination)

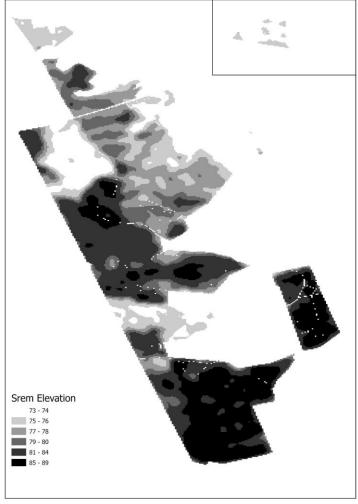
(geomorphon x aspect x slope) x parent material

- East Boranja- 100 soil profiles
- Tara- 44 soil profiles

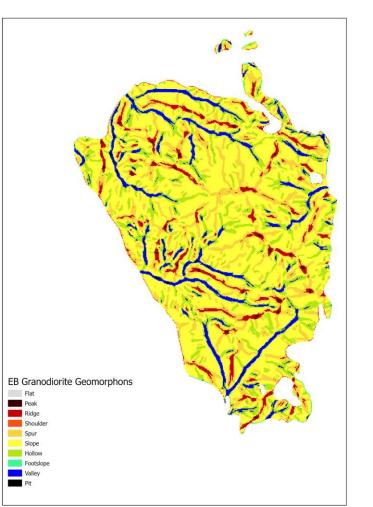

- For the pedunculate oak, the division by altitude was used
 - by analyzing the digital elevation model (DEM), it was divided into 6 classes

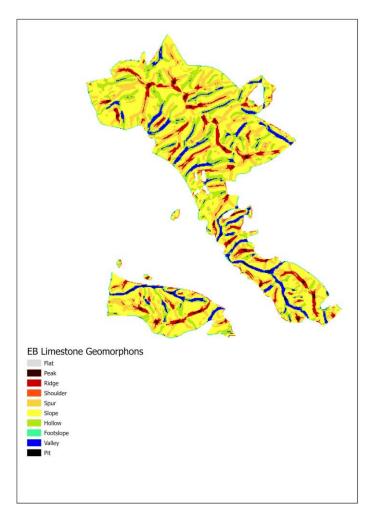

Class	Elevation (m)
1	72 – 74
2	75 – 76
3	77 – 78
4	79 – 80
5	81-84
6	85 – 89

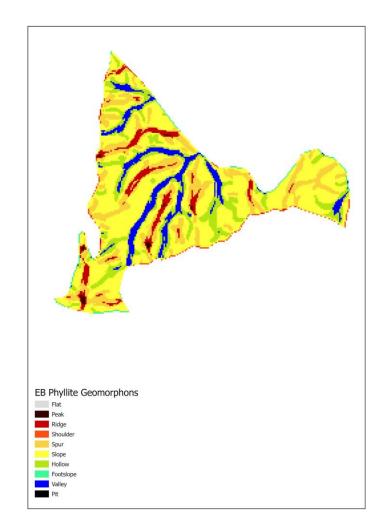
• At the location of each soil profile, a Vegetation relevés (for vegetation analysis) was taken according to the Braun-Blanquet scale



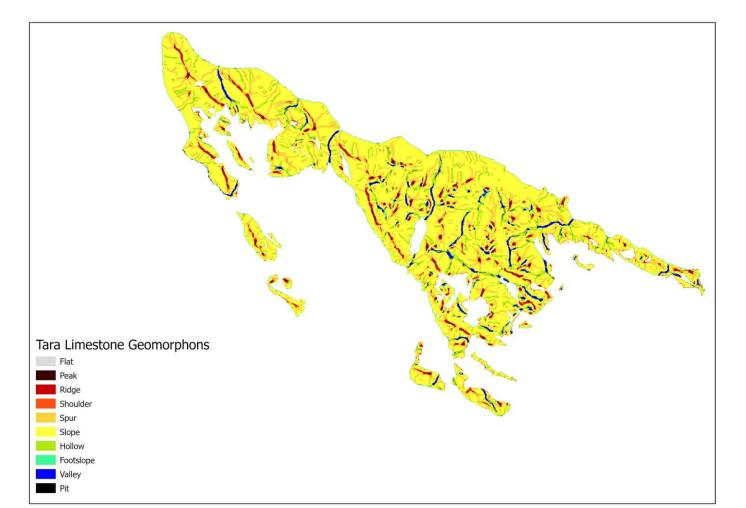
- Parent material:
 - Pedunculate oak alluvium
 - Beech limestone, phyllite, granodiorite

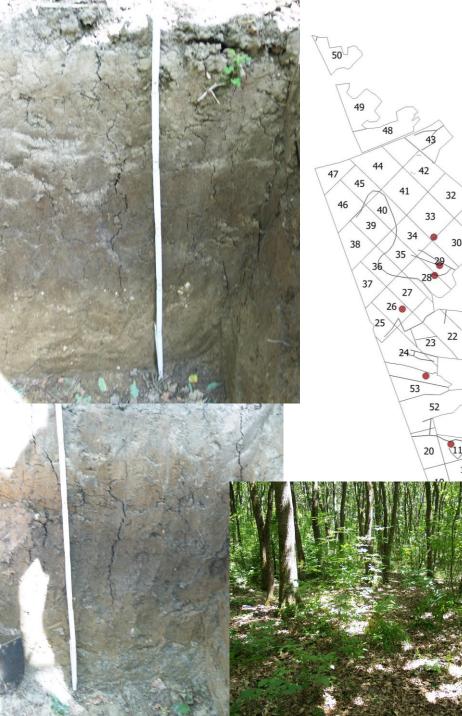



• Preparation of maps with elevations for pedunculate oak

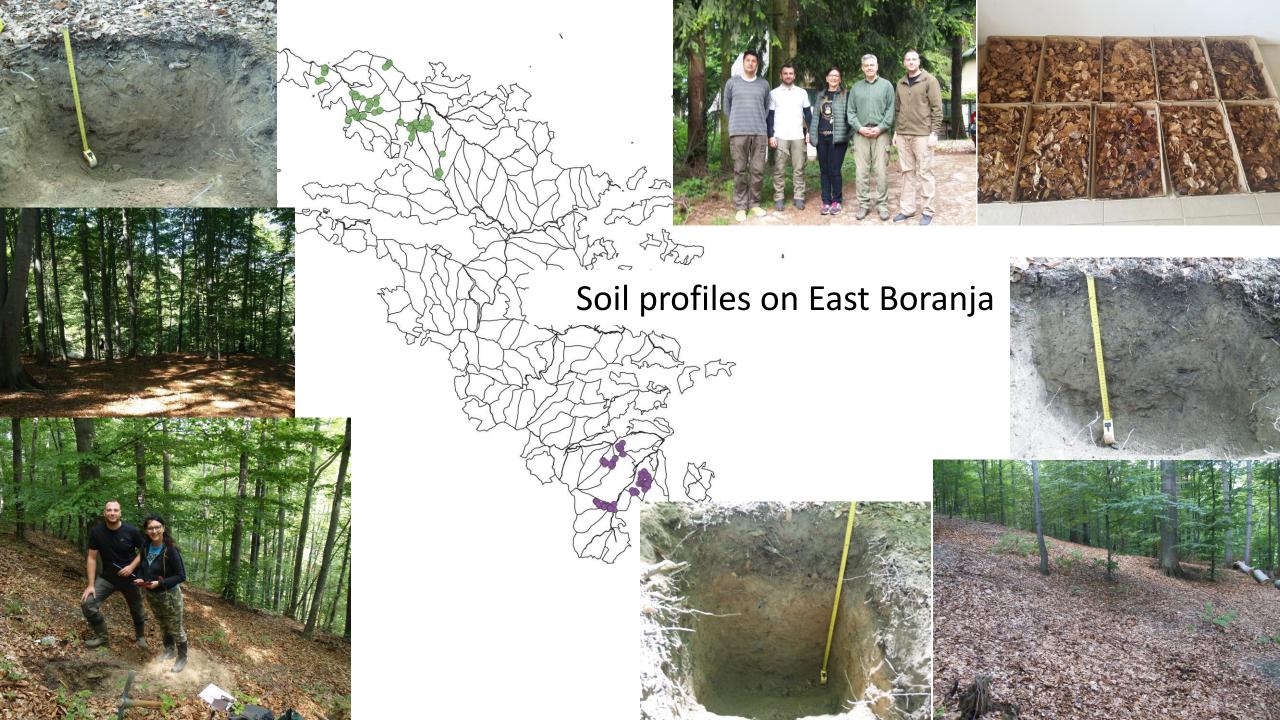


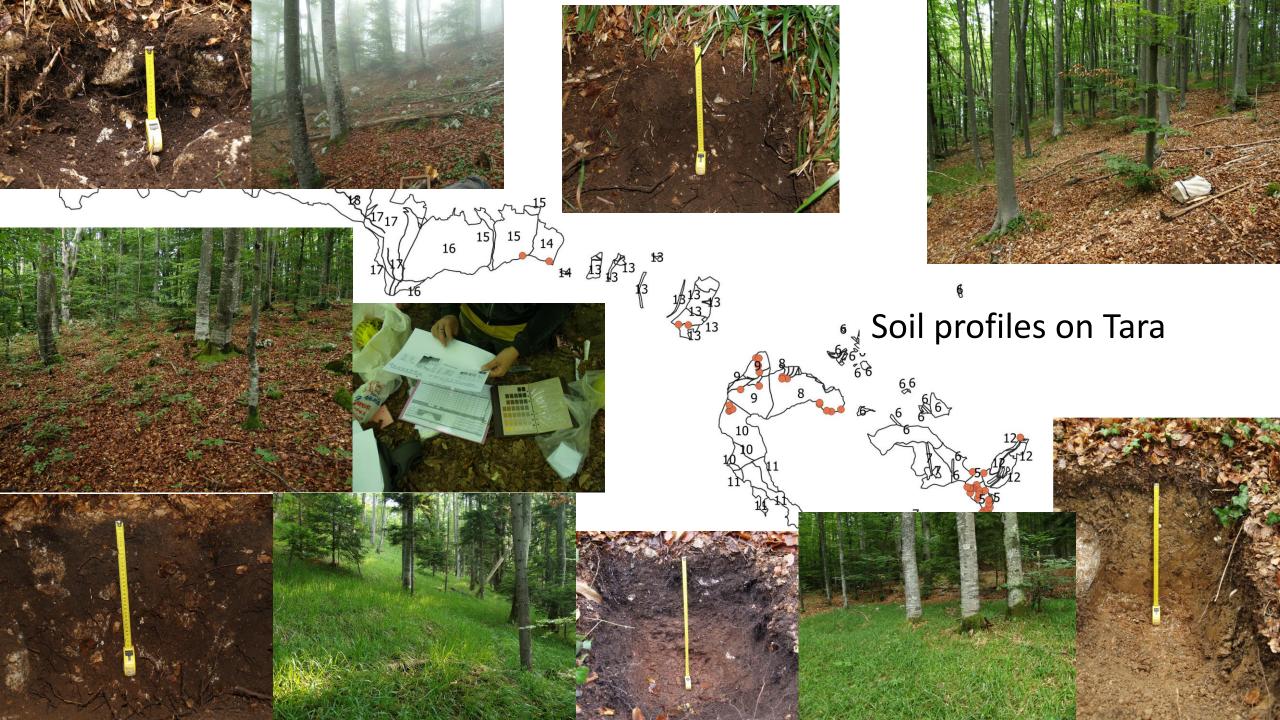
• Preparation of maps with geomorphones for beech





• Preparation of maps with geomorphones for beech




Soil profiles in Srem

• Laboratory analysis of soil samples

- analyzes of physical and chemical properties for site mapping and
- for the purposes of the GOTILWA+ simulator

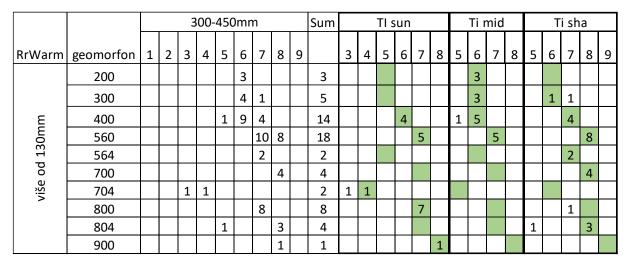
- Soil texture
- Skeleton content
- pH value

....

- Content of organic matter (O_I and O_f)
- Field capacity
- Degree of soil saturation with bases

								-																
	A	В	С	D	E	F	G	Н	I	J		К	L		М									
1	Profile	AHORIZON	Depth (cm)	Coarse fraction (%)	 Hygroscopic water (%) 	11.40 (2.0- 0.06mm)	0.062 (0.06- 0.002mm)	00.06 Clay (<	silty clay	AWChorizon (mm)		AWCprofile (mm)	Soil organic matter (L+F horizon)	(g/0.0625cm ²)	Soil organic matter (L+F horizon) (g/m ²)									
5	2/21	(B)rz	24-34	-	6.78	2.70	33.90	63.40	silty clay				93.5	58	1497.28	- <u>·</u>			-					~
6		Ah	0-5	20	8.74	18.70	62.70	18.60	silt loam				-			_			(02	0
	3/21	A	5-15	20	6.63	13.30	54.60	32.10	silty clay loam				133.	83	2141.28	/kg	(%	3 (%	s (%	(%	(%	z	e P2	le K
8		(B)rz	15-25	20	5.90	8.70	49.10	42.20	silty clay				-			T (cmol/kg)	V (%)	caCO3 (%)	Humus (%)	C (%)	(%) N	C/N	Available P2O5 (mg/100g)	Available K20 (mg/100g)
	4/21	A	0-35	10	7.09	15.40	52.50	32.10	silty clay loam				90.2	20	1443.20	(c		Ca	Hu				(m	(m
10		A	0-4		4.71	14.70	66.30	19.00	silt loam							-					-			G 18
	5/21	Eorl	4-19		2.30	6.80	66.80	26.40	silt loam				64.8	37	1037.92	99.33	91.82	-		18.43			5.72	19.59
12		Bt or (B)	19-45		4.16	4.20	52.90	42.90	silty clay					19 I I I I I I I I I I I I I I I I I I I			-	1.32	14.81			9.14	0.62	11.37
13		Ah	0-4	10	8.65	34.50	50.60	14.90	silt loam							61.14	63.79	-				11.50	1.80	11.83
	6/21	A	4-10	40	6.87	19.70	58.70	21.60	silt loam				115	.6	1849.6		177	0.97	6.40			9.77		14.57
15		A or (B)	10-22	90	6.26	10.40	53.70	35.90	silty clay loam							60.03	81.05	-	26.42		-	11.61	3.49	24.16
16	1/24	Ah	0-7	30	5.80	31.70	56.20	12.10	silt loam				07.0			54.76	86.28	-	17.21		-	11.88	2.47	13.66
17	7/21	A	7-35	90	6.85	7.60	61.00	31.40	silty clay loam				87.9	94	1407.04		-	0.83	8.77			10.82	0.27	11.83
18	8/21	A	0-24	50	5.75	7.10	64.60	28.30	silty clay loam				77.5	50	1240.00	-	-	1.49	14.96			11.57	0.41	11.37
19		Olfh	2			0.00	0.00	0.00								62.49	38.89	-				11.39	5.01	15.94
20	9/21	А	0-3		6.19	8.80	40.70	50.50	silty clay				00.0	12	1440 40	30.33	51.77	-	5.18			10.36	1.11	4.62
21	9/21	A or E	3-16	10	5.26	22.70	36.60	40.70	clay				90.0	13	1440.48	34.17	86.32	-	4.28			9.19	-	8.18
22		(B) or Bt	16-40	10	8.26	4.40	21.00	74.60	clay							95.14	56.44	-			-	11.53	7.05	23.70
23 1	0/21	(B)rz	2-56	10	4.56	21.00	34.30	44.70	clay				124.	24	1987.84	58.30	75.38	-	17.17		1	10.95	3.79	14.11
24 1	1/21	A	0-2		4.93	19.90	45.90	34.20	silty clay loam				149.	50	2392.00	-	-	1.20	10.52		-	9.24	4.79	13.66
25			0-2		7.15	22.40	49.10	28.50	clay loam								-	-	36.12			12.77	5.28	23.70
26			2-12		6.58	6.60			silty clay							-	-	0.83	14.18			11.75	0.33	11.37
	2	Chemica	I propertie	s	Physical	propertie	s Terra		Ð							50.30	92.25	-	11.33			11.73 20.79	0.46	7.72
	-							19			5.05		24.25	-	-	-		-	49.10		_		-	
								20 9/2						15.7		49.66	68.26		6.81			12.34	3.13	11.83
								21						27.3		47.40	42.41	-	5.40		-	13.62	1.15	7.72
								22 23 10/			7.34		6.25	4.06		44.36 33.35	90.84 90.25	-	2.18	1.26 0.94	0.13	9.72	0.10	17.77 18.68
								23 10/					5.00 28.75	3.23		49.09	90.25 61.93	-	1.62		- 0.80		5.47	18.68
								24 11/	A					22.7		49.09	50.70	-	9.97		0.80	-	3.56	16.18
									Chemical p	2 2 2 1 I			operties	Ten		+)			1 1					: 4
								Ready (4	Accessibility: Unavail		riy	sical pri	operates	Ten		9								
								mentaly C.	r	1.00														

							carpine i			corpine i	
				ика	1	2	3	4	5	6	
										дерске па	z
• \/	agatation rala		ás santad into vagatation tabla		3a	3a	3a	3a	3a	3a	이디
• V	egetation rele	eve	és sorted into vegetation table	S ^{IHа (m)}	78-80	78-80	78-80	78-80	78-80	78-80	4TF
	0		0		-	-	-	-	-	-	присутност
	Δ		A B		5	5	5	5	5	5	풍
1 Pr	rofil Tip šumske vegetacij	8	86 Staphyleo-Fagetum fac. rubosum		0.8	0.8	0.8	0.7	0.5	0.7	ene
2		9	87 Quercetum frainetto-cerridis subass. ornetosum	(m)	11	18	17	12	10	12	5
3		10	88 Quercetum frainetto-cerridis subass. ornetosum	к (cm)	20	30	30	30	20	30	
3	29 Fagetum submontanum	11	89 Quercetum frainetto-cerridis subass. ornetosum	ње (т)	3	4	4	6	4	5	
4	30 Asperulo odoratae-Fagetum	12	90 Quercetum frainetto-cerridis subass. ornetosum		+	3.4	3.3	1.2	2.2	3.3	v
5	31 Luzulo-Fagetum	13	91 Festuco drymaina Francisco francisco de subacuna	lvanica Marsch	. 4.4	+			1.2	2.2	IV
6	32 Pterialo-Fagetum	14	92 Fagetum subi Висока шума- Лошинци	a Ehr.		+	+	+			Ш
7	33 Fagetum submontanum	15	93 Fagetum subi	<i>L</i> .			+	+	1.1		111
8	34 Festuco arymeiae-Fagetum	16	94 Ilici-Fagetum 1- Шума лужњака и обичног граба (Querco-Carpinetu	ım betuli	+		+				
9	35 Fagetum submontanum	177270		rcetum rc			+	+	1.1		
10	30 Luzulo-Fagetum	17	35 curpino betui 2 III-man and an Encourse (III-mate Oursecture)					+	+		
11	ST rugetuin submontanum subass.	18	Jo curpino betui					2.2	+		
12	so Asperuio ouorutue-rugeturn	19	st Fraxino office & Tomić 1979)	olia (Ait.)Willd.		2.2	1.1		-		
13	39 Asperulo odoratae-Fagetum	20	98 Ostryo-Fageti 5 IIIwaa waxa ca veromenua mamoa (Quarcatum			1.1					1
14	40 Luzulo-Fagetum	21	99 Fraxino orni-C 6- IIIvwa uvyti ara ca utarapom typutution (Violo-Ou	arcetum na (Mill.)Swing	le		+				I.
15	41 Fagetum submontanum subass.	22	100 Fagetum subi 1980	a (Raf.)Schneid	d.		+				1
16	42 Musco-Fagetum	23	101 Festuco drym	a			+				1
17	43 Vaccinio-Fagetum	24	102 Fraxino orni-Quercetum petraeae		+						
18		25	103 Tilio tomentosae-Quercetum petraeae	L. Scop.		+			+		
19	45 Fagetumsubmontanum	26	104 Tilio tomentosae-Fagetum subass. festucetosum drymeae	scop. Istanum L.		т		+			
20	0	27	105 Querco-Fagetum	picus (L.)Koch				1.1			- i
21		28	106 Festuco drymeiae-Fagetum	l.				1.1			I
22		29	107 Fagetum submontanum subass. filicetosum					+			I.
23	49 Luzulo-Fagetum	30	108 Asperulo odoratae-Fagetum	cacia L.			+				1
24		31	109 Faaetum submontanum subass. filicetosum								
()	Sheet1 (+)	4	Sheet1 +		0.1	0.7	0.3	0.5	0.8	0.6	
				(m)	2	3	2	3	2	2	,


- Analized climate data:
 - Average annual temperature (°C)
 - Average temperature of the growing season (°C)
 - Average temperature of the coldest month of the year (°C)
 - Extreme temperatures min/max (°C)
 - Average annual rainfall (mm)
 - Average amount of precipitation in the growing season (mm)
 - Average amount of precipitation in summer (mm)
 - Potential evapotranspiration (mm²/day)
 - Solar radiation (mj m²/day)
 - Multi-year average wind speed (m/s)

- To calculate the water balance level (WBL), the following is determined:
 - available water capacity (AWC) (by horizons and profile) grouped into classes (7);
 - average total amount of precipitation in the summer months;
 - geomorphones and
 - total insolation

• The obtained values are inserted into the transformation table

Rrwarm			300 - 450			450 - 600			6	00-75	50		>750		
AWC [mm]	landscape unit	code	sun	mid	sha	sun	mid	sha	sun	mid	sha	sun	mid	sha	
>130	spur, slop <mark>e</mark> ; < 30 °	560	7	7	8	8	8	9	9	9	9	9	9	9	
>130	spur, slope; > 30 °	564	6	7	8	7	8	9	8	9	9	9	9	9	
>130	shoulder	400	6	6	7	7	7	8	8	9	9	9	9	9	
>130	peak	200	6	6 6	7	7	7	8	8	9	9	9	9	9	
>130	ridge	300	6	6	7	7	7	8	8	9	9	9	9	9	
>130	hollow; < 30 °	700	7	8	8	8	9	9	9	9	9	9	9	9	
>130	hollow; > 30 °	704	6	7	8	7	8	9	8	9	9	9	9	9	
> 130	footslope	800	7	8	8	8	9	9	9	9	9	9	9 9	9	
> 130	footslope; > 30 °	804	6	7	8	7	8	9	8	9	9	9	9	9	
>130	valley, pit	900	8	8	9	9	9	9	9	9	9	9	9	9	
95 - 130	spur, slope; < 30 °	560	6	6	7	7	7	8	8	8	8	9	9	9	
95 - 130	spur, slope; > 30 °	564	5	6	7	6	7	8	7	8	8	8	9	9	
95 - 130	shoulder	400	5	5	6	6	6	7	7	8	8	8	9	9	
95 - 130	peak	200	5	5	6	6	6	7	7	8	8	8	9	9	
95 - 130	ridge	300	5	5	6	6	6	7	7	8	8	8	9	9	
95 - 130	hollow; < 30 °	700	6	7	7	7	8	8	8	8	8	9	9	9	
95 - 130	hollow; > 30 °	704	5	7 6	7	6	7	8	7	8	8	8	9	9	
95 - 130	footslope	800	6	7	7	7	8	8	8	8	9	9	9	9	

• Table of frequencies for water balance (WBL)

• Transfer table

Geom	Ti sun	Ti mid	Ti sha
200	5	6	6
300	5	6	6
400	6	6	7
560	7	7	8
564	5	6	7
700	7	7	8
740	4	5	6
800	7	7	8
804	7	7	7
900	8	8	9

WBL	Class	Water deficit
1	Extremely dry	Very long periods of water deficit
2	Very dry	Long periods of water deficit
3	Dry	Longer periods of water deficit
4	Medium dry	Occasionally in longer periods of water deficit
5	A little wet	In shorter periods of water deficit
6	Moderately humid	Occasionally in short periods of water deficit
7	Wet	Rarely water deficit
8	Very humid	Water deficiency is very rare
9	Extremely humid	Extremely rare water deficiency

- Determination of nutrient regime (NR)
- The most common parameter to determine is the base saturation (BS) or pH in $\rm H_2O$
- A classification scheme is used

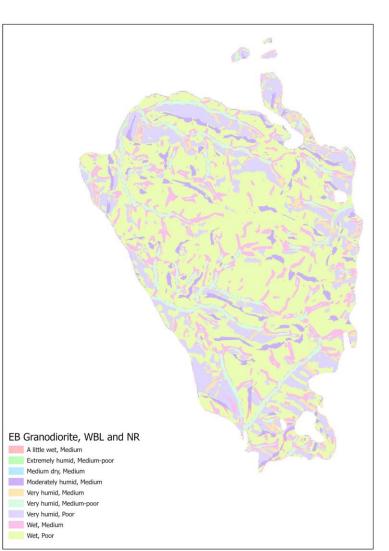
1				
coarse			> 50 %	
fraktion	< 50 %	alkar	nality of be	drock
pH class		high	medium	less
1	rich	rich	rich-	rich-
1	псп	псп	medium	medium
2	rich-	rich-	rich-	medium
2	medium	medium	medium	mealum
3	medium	rich-	medium	medium
5	mealum	medium	mealum	mealum
4	medium	medium	medium	medium
4	mealum	mealum	mealum	poor
5	medium	medium	medium -	medium -
5	poor	medium	poor	poor
c		medium -	medium -	
6	poor	poor	poor	poor

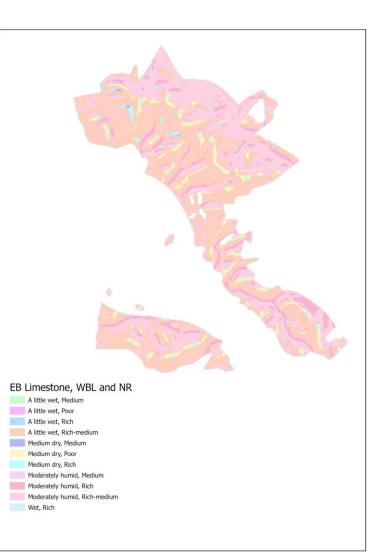
GEOM	rich	ch-mediui	medium	edium-po	poor	Tota
200					1	1
300					4	4
400				1	4	5
560					9	9
564				3	12	15
700						0
800	1		1	2	1	5
804				2	1	3
900				2	2	4
Suma	0	0	1	10	34	46

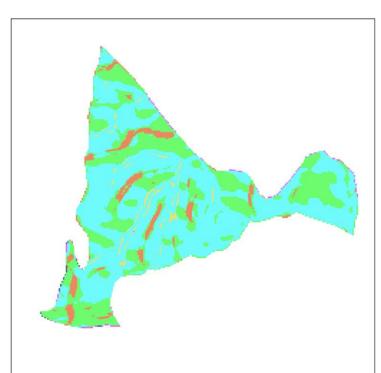
• In GIS software the following are connected:

geomorphon and elevation maps prepared

 $\leq \geq$


data from transfer tables for water balance and nutritional regime


site maps



- Pedunculate oak in MU "Visoka šuma-Lošinci"
- Alluvium:
 - 6 site types are defined

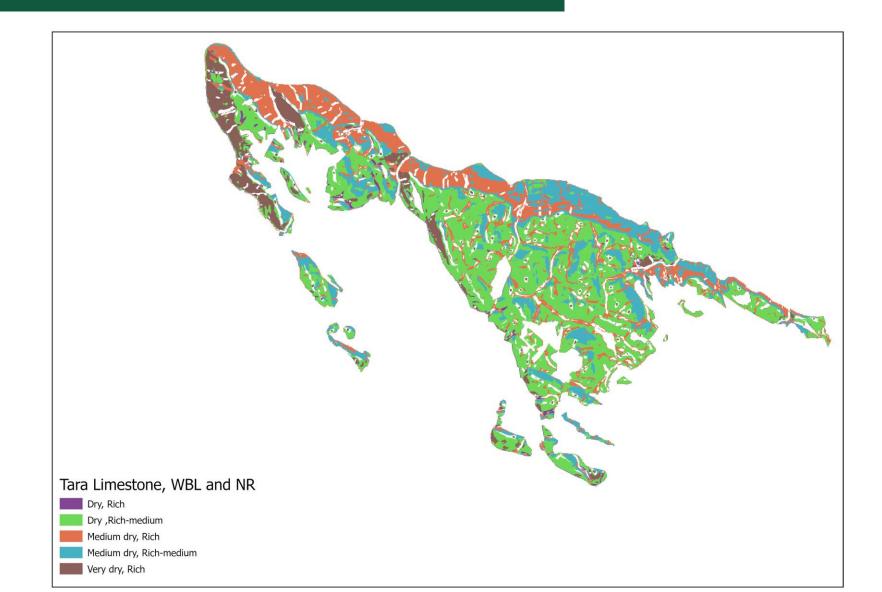
WBL	Water balance level (class)	Water deficit	Nutrient regime	Area (ha)	%
9	Extremely humid	Extremely rare water deficiency	Rich-medium	228.82	10.92%
8	Very humid	Water deficiency is very rare	Rich	285.01	13.61%
8	Very humid	Water deficiency is very rare	Rich-medium	1580.74	75.47%
9	Extremely humid	Extremely rare water deficiency	Rich-medium	228.82 1	L0.92%
8	Very humid	Water deficiency is very rare	Rich	285.01 1	L3.61%
8	Very humid	Water deficiency is very rare	Rich	1580.74 7	75.47%

EB Phyllite, WBL and NR A little wet, Medium A little wet, Poor Medium dry, Poor Moderately humid, Medium Moderately humid, Poor Wet, Poor

- Beech in MU "East Boranja"
- Granodiorite:
 - 9 site types are defined

WBL	Water balance level (class)	Water deficit	Nutrient regime	Area (ha)	%
4	Medium dry	Occasionally in longer periods of water deficit	Medium	0.14	0.00%
5	A little wet	In shorter periods of water deficit	Medium	16.47	0.24%
6	Moderately humid	Occasionally in short periods of water deficit	Medium	378.83	5.58%
7	Wet	Rarely water deficit	Medium	890.39	13.12%
7	Wet	Rarely water deficit	Poor	3788.65	55.81%
8	Very humid	Water deficiency is very rare	Medium	184.46	2.72%
8	Very humid	Water deficiency is very rare	Medium-poor	440.91	6.49%
8	Very humid	Water deficiency is very rare	Poor	1080.06	15.91%
9	Extremely humid	Extremely rare water deficiency	Medium-poor	8.98	0.13%

7	Wet	Rarely water deficit	Medium	890.39	13.12%
8	Very humid	Water deficiency is very rare	Poor	1080.06	15.91%
7	Wet	Rarely water deficit	Poor	3788.65	55.81%

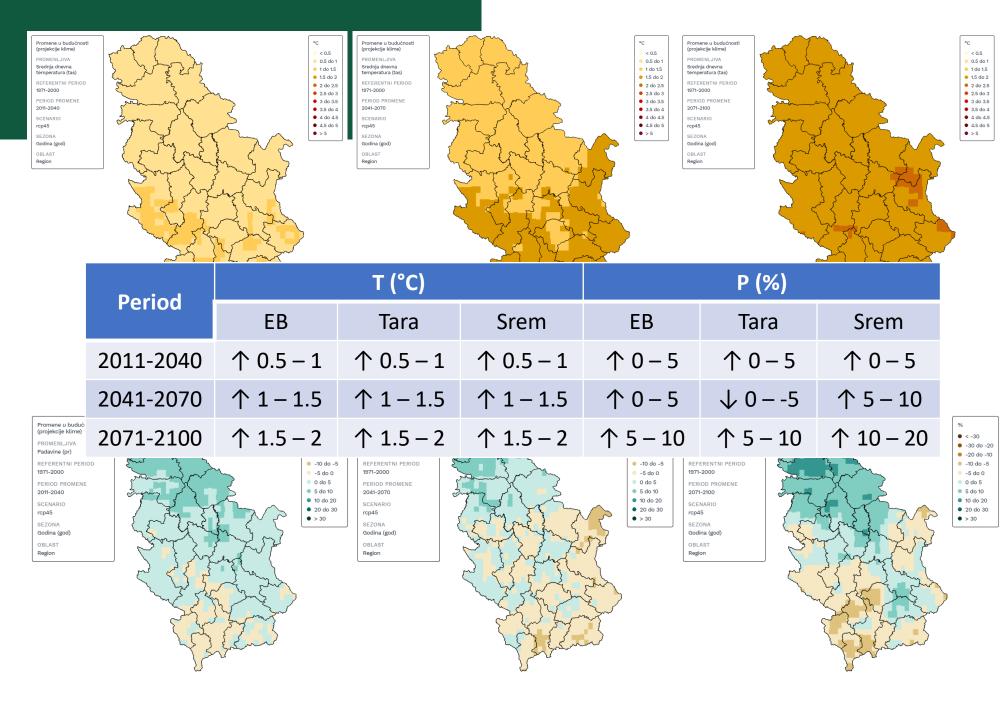

- Beech in MU "East Boranja"
- Limestone:
 - 11 site types are defined

WBL	Water balance level (class)	Water deficit	Nutrient regime	Area (ha)	%
4	Medium dry	Occasionally in longer periods of water deficit	Medium	3.82	0.11%
4	Medium dry	Occasionally in longer periods of water deficit	Rich	60.61	1.79%
4	Medium dry	Occasionally in longer periods of water deficit	Poor	221.82	6.56%
5	A little wet	In shorter periods of water deficit	Rich	4.28	0.13%
5	A little wet	In shorter periods of water deficit	Medium	11.78	0.35%
5	A little wet	In shorter periods of water deficit	Poor	17.95	0.53%
5	A little wet	In shorter periods of water deficit	Rich-medium	1678.51	49.63%
6	Moderately humid	Occasionally in short periods of water deficit	Medium	38.37	1.13%
6	Moderately humid	Occasionally in short periods of water deficit	Rich	269.57	7.97%
6	Moderately humid	Occasionally in short periods of water deficit	Rich-medium	1055.16	31.20%
7	Wet	Rarely water deficit	Rich	20.52	0.61%
4	Medium dry	Occasionally in longer periods of water deficit	Poor	221.82	6.56%
6	Moderately humid	Occasionally in short periods of water deficit	Rich	269.57	7.97%
6	Moderately humid	Occasionally in short periods of water deficit	Rich-medium	1055.16	31.20%
5	A little wet	In shorter periods of water deficit	Rich-medium	1678.51	49.63%

- Beech in MU "East Boranja"
- Phyllite:
 - 6 site types are defined

WBL Water balance level (class)		Water deficit	Nutrient regime	Area (ha)	%
5	A little wet	In shorter periods of water deficit	Medium	1.6	0.15%
6	Moderately humid	Occasionally in short periods of water deficit	Medium	7.97	0.76%
7	Wet	Rarely water deficit	Poor	15.7	1.51%
4	Medium dry	Occasionally in longer periods of water deficit	Poor	54.03	5.18%
5	A little wet	In shorter periods of water deficit	Poor	344.67	33.05%
6	Moderately humid	Occasionally in short periods of water deficit	Poor	618.88	59.35%

4	Medium dry	Occasionally in longer periods of water deficit Poor		54.03	5.18%
5	A little wet	In shorter periods of water deficit	Poor	344.67	33.05%
6	Moderately humid	Occasionally in short periods of water deficit	Poor	618.88	59.35%

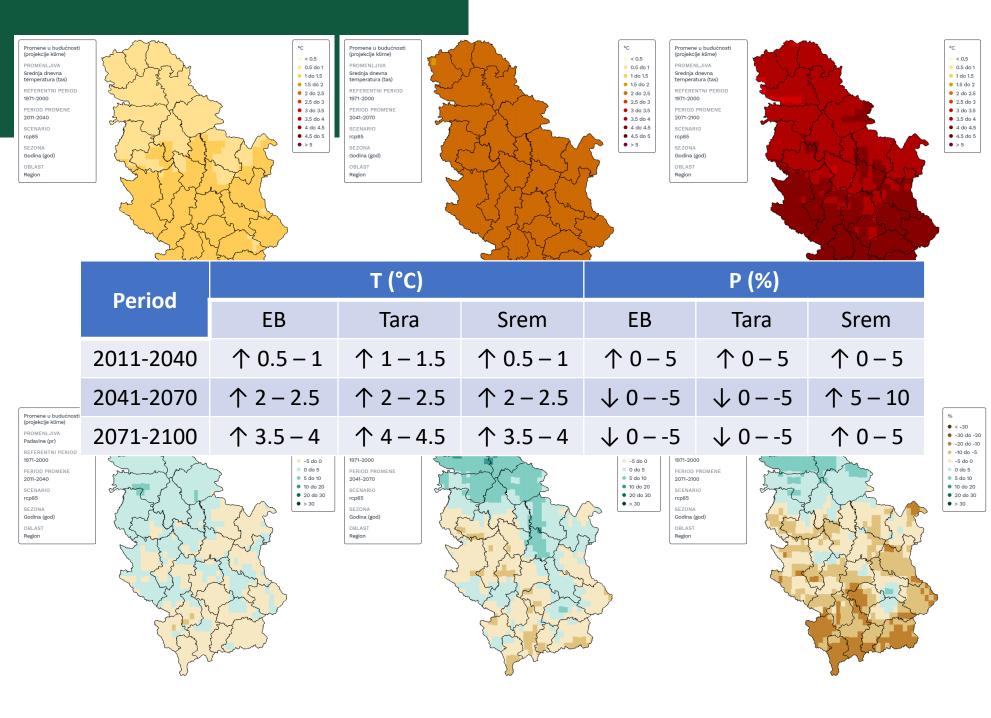

- Beech in MU "Meliorativno zaštitne šume Rača"
- Limestone:
 - 5 site types are defined

WBL	Water balance level (class) Water deficit		Nutrient regime	Area (ha)	%
3	Dry	Longer periods of water deficit	Rich	284.01	2.03%
2	Very dry	Long periods of water deficit	Rich	1184.6	8.47%
4	Medium dry	Occasionally in longer periods of water deficit	Rich-medium	2862.66	20.46%
4	Medium dry	Occasionally in longer periods of water deficit	Rich	3261.24	23.30%
3	Dry	Longer periods of water deficit	Rich-medium	6401.26	45.74%

4	Medium dry	Occasionally in longer periods of water deficit	Rich-medium	2862.66	20.46%
4	Medium dry	Occasionally in longer periods of water deficit	Rich	3261.24	23.30%
3	Dry	Longer periods of water deficit	Rich-medium	6401.26	45.74%

https://atlas-klime.eko.gov.rs

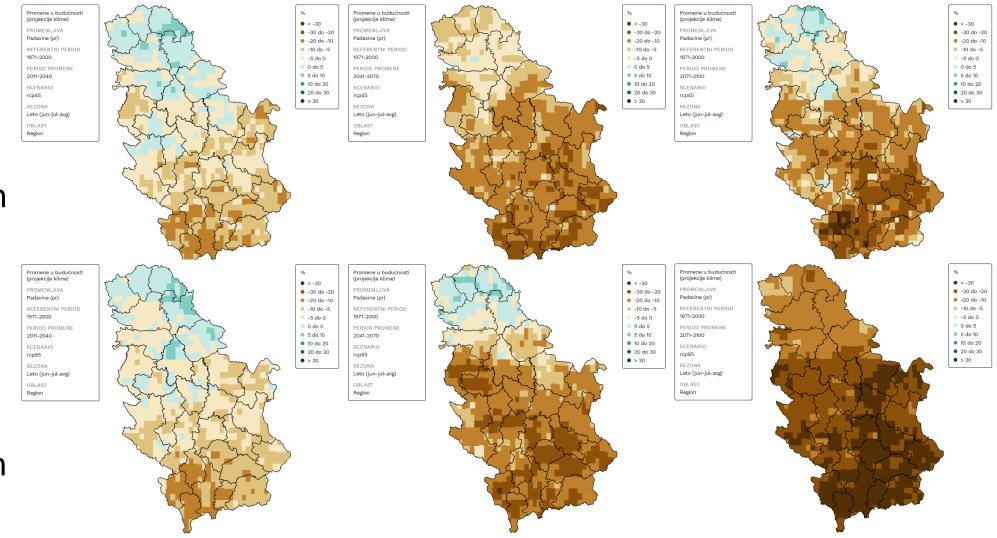
Climate changes according to the RCP 4.5 scenario (with mitigation)



Reference period 1971-2000

Фаза III

https://atlas-klime.eko.gov.rs


Climate changes according to the RCP 8.5 scenario (without mitigation)

Reference period

Фаза III

- Precipitation in summer months are important for site mapping
- RCP 4.5
- 🕁 5-10% oak
- ↓ 10-20% beech

- RCP 8.5
- 🕹 20-30% oak
- ↓ 5->30% beech

• A decrease of up to 30% results in a decrease in precipitation in the growing season, the amount of precipitation falls below 300 mm and as a result there is a change in the water balance

Water balance classes

decrease by one

geom	TiS	Tin	Tih	geom	TiS	Tin	Т
200	4	4	5	200	3	3	
300	4	4	5	300	3	3	4
400	4	4	5	400	3	3	4
560	5	5	6	560	4	4	4
564	4	5	6	564	3	4	Į
700	5	6	6	700	4	5	Ę
740	4	5	6	740	3	4	Ę
800	5	6	6	800	4	5	Ę
804	4	5	6	804	4	4	ļ
900	6	6	7	900	5	5	(

Фаза III

• Srem

• Tara

Current class	Future class
9- Extremely humid	8- Very humid
8- Very humid	7- Wet

Current class	Future class
8- Very humid	7- Wet
7- Wet	6- Moderately humid
6- Moderately humid	5- A little wet
5- A little wet	4- Medium dry
4- Medium dry	3- Dry

Istočna Boranja

Current class	Future class	
4- Medium dry	3- Dry	
3- Dry	2- Very dry	

- Vegetation analyzes
- In Srem, there are 6 vegetation relevés in which the pedunculate oak is dominant:
 - Populeto albae-Quercetum roboris B. Jov.
 - Violo-Quercetum roboris B. Jovanović & Tomić 1980
 - *Fraxino angustifoliae-Quercetum roboris* B. Jovanović & Tomić 1979
 - Quercetum roboris subass. caricetosum brizoides
 - Ulmeto-Quercetum roboris Mišić & Čolić 1974.
 - Carpino betuli-Quercetum roboris Anić 1959.
- The studied communities represent drier varieties, in which the pedunculate oak is mostly dominant, but due to changes in climate and habitat conditions (underground water), other species will find their optimum for growth and development:

Carpinus betulus, Ulumus effusa, Ulmus campestris

- Vegetation analyzes
- In MU "East Boranja":
 - on granodiorite are 4 communities- beech is dominant
 - on limestone are 10 communities beech is dominant, but there is also *Q. cerris*, *Q. frainetto*, *C. betulus*, *A. campestre*
 - on phyllite are 7 communities- beech is dominant, C. betulus occurs

• In the studied communities, beech dominates, and after the climate change, other species will find optimum for growth and development in addition to beech:

Quercus cerris, Quercus frainetto, Carpinus betulus

- Vegetation analyzes
- In MU "Meliorativno zaštitne šume Rača"
 - on limestone are 10 communities- beech is dominant

 In the studied communities, beech dominates, and due to climate changes, besides beech, other species will find their optimum for growth and development:

Quercus cerris, Ostrya carpinifolia

Federal Office for Agriculture and Food

Olivera Košanin FFUB

Janko Ljubičić FFUB

Albert Reif UF

Thank you for your attention

